skip to main content


Search for: All records

Creators/Authors contains: "Cuthbert, Mark O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In dryland ecosystems, vegetation within different plant functional groups exhibits distinct seasonal phenologies that are affected by the prevailing hydroclimatic forcing. The seasonal variability of precipitation, atmospheric evaporative demand, and streamflow influences root-zone water availability to plants in water-limited environments. Increasing interannual variations in climate forcing of the local water balance and uncertainty regarding climate change projections have raised the potential for phenological shifts and changes to vegetation dynamics. This poses significant risks to plant functional types across large areas, especially in drylands and within riparian ecosystems. Due to the complex interactions between climate, water availability, and seasonal plant water use, the timing and amplitude of phenological responses to specific hydroclimate forcing cannot be determined a priori , thus limiting efforts to dynamically predict vegetation greenness under future climate change. Here, we analyze two decades (1994–2021) of remote sensing data (soil adjusted vegetation index (SAVI)) as well as contemporaneous hydroclimate data (precipitation, potential evapotranspiration, depth to groundwater, and air temperature), to identify and quantify the key hydroclimatic controls on the timing and amplitude of seasonal greenness. We focus on key phenological events across four different plant functional groups occupying distinct locations and rooting depths in dryland SE Arizona: semi-arid grasses and shrubs, xeric riparian terrace and hydric riparian floodplain trees. We find that key phenological events such as spring and summer greenness peaks in grass and shrubs are strongly driven by contributions from antecedent spring and monsoonal precipitation, respectively. Meanwhile seasonal canopy greenness in floodplain and terrace vegetation showed strong response to groundwater depth as well as antecedent available precipitation (aaP = P − PET) throughout reaches of perennial and intermediate streamflow permanence. The timings of spring green-up and autumn senescence were driven by seasonal changes in air temperature for all plant functional groups. Based on these findings, we develop and test a simple, empirical phenology model, that predicts the timing and amplitude of greenness based on hydroclimate forcing. We demonstrate the feasibility of the model by exploring simple, plausible climate change scenarios, which may inform our understanding of phenological shifts in dryland plant communities and may ultimately improve our predictive capability of investigating and predicting climate-phenology interactions in the future. 
    more » « less
  2. Abstract Challenges exist for assessing the impacts of climate and climate change on the hydrological cycle on local and regional scales, and in turn on water resources, food, energy, and natural hazards. Potential evapotranspiration (PET) represents atmospheric demand for water, which is required at high spatial and temporal resolutions to compute actual evapotranspiration and thus close the water balance near the land surface for many such applications, but there are currently no available high-resolution datasets of PET. Here we develop an hourly PET dataset (hPET) for the global land surface at 0.1° spatial resolution, based on output from the recently developed ERA5-Land reanalysis dataset, over the period 1981 to present. We show how hPET compares to other available global PET datasets, over common spatiotemporal resolutions and time frames, with respect to spatial patterns of climatology and seasonal variations for selected humid and arid locations across the globe. We provide the data for users to employ for multiple applications to explore diurnal and seasonal variations in evaporative demand for water. 
    more » « less
  3. Abstract. Dryland regions are characterised by water scarcity and are facingmajor challenges under climate change. One difficulty is anticipating howrainfall will be partitioned into evaporative losses, groundwater, soilmoisture, and runoff (the water balance) in the future, which has importantimplications for water resources and dryland ecosystems. However, in orderto effectively estimate the water balance, hydrological models in drylandsneed to capture the key processes at the appropriate spatio-temporal scales.These include spatially restricted and temporally brief rainfall, highevaporation rates, transmission losses, and focused groundwater recharge.Lack of available input and evaluation data and the high computational costsof explicit representation of ephemeral surface–groundwater interactionsrestrict the usefulness of most hydrological models in these environments.Therefore, here we have developed a parsimonious distributed hydrologicalmodel for DRYland Partitioning (DRYP). The DRYP model incorporates the keyprocesses of water partitioning in dryland regions with limited datarequirements, and we tested it in the data-rich Walnut Gulch ExperimentalWatershed against measurements of streamflow, soil moisture, andevapotranspiration. Overall, DRYP showed skill in quantifying the maincomponents of the dryland water balance including monthly observations ofstreamflow (Nash–Sutcliffe efficiency, NSE, ∼ 0.7),evapotranspiration (NSE > 0.6), and soil moisture (NSE ∼ 0.7). The model showed that evapotranspiration consumes > 90 % of the total precipitation input to the catchment andthat < 1 % leaves the catchment as streamflow. Greater than 90 % of the overland flow generated in the catchment is lost throughephemeral channels as transmission losses. However, only ∼ 35 % of the total transmission losses percolate to the groundwater aquiferas focused groundwater recharge, whereas the rest is lost to the atmosphereas riparian evapotranspiration. Overall, DRYP is a modular, versatile, andparsimonious Python-based model which can be used to anticipate and plan forclimatic and anthropogenic changes to water fluxes and storage in drylandregions. 
    more » « less
  4. null (Ed.)
    Abstract. Despite clear signals of regional impacts of the recent severe drought inCalifornia, e.g., within Californian Central Valley groundwater storage and Sierra Nevada forests, our understanding of how this drought affected soil moisture and vegetation responses in lowland grasslands is limited. In order to better understand the resulting vulnerability of these landscapes to fire and ecosystem degradation, we aimed to generalize drought-induced changes in subsurface soil moisture and to explore its effects within grassland ecosystems of Southern California. We used a high-resolution in situ dataset of climate and soil moisture from two grassland sites (coastal and inland), alongside greenness (Normalized Difference Vegetation Index) data from Landsat imagery, to explore drought dynamics in environments with similar precipitation but contrasting evaporative demand over the period 2008–2019. We show that negative impacts of prolonged precipitation deficits on vegetation at the coastal site were buffered by fog and moderate temperatures. During the drought, the Santa Barbara region experienced an early onset of the dry season in mid-March instead of April, resulting in premature senescence of grasses by mid-April. We developed a parsimonious soil moisture balance model that captures dynamic vegetation–evapotranspiration feedbacks and analyzed the links between climate, soil moisture, and vegetation greenness over several years of simulated drought conditions, exploring the impacts of plausible climate change scenarios that reflect changes to precipitation amounts, their seasonal distribution, and evaporative demand. The redistribution of precipitation over a shortened rainy season highlighted a strong coupling of evapotranspiration to incoming precipitation at the coastal site, while the lower water-holding capacity of soils at the inland site resulted in additional drainage occurring under this scenario. The loss of spring rains due to a shortening of the rainy season also revealed a greater impact on the inland site, suggesting less resilience to low moisture at a time when plant development is about to start. The results also suggest that the coastal site would suffer disproportionally from extended dry periods, effectively driving these areas into more extreme drought than previously seen. These sensitivities suggest potential future increases in the risk of wildfires under climate change, as well as increased grassland ecosystem vulnerability. 
    more » « less